题目
| b2 |
| 4 |
答案
| b2 |
| 4 |
| |b| |
| 2 |
当c>|b|时,有M≥
| f(c)-f(b) |
| c2-b2 |
| c2-b2+bc-b2 |
| c2-b2 |
| c+2b |
| b+c |
令t=
| b |
| c |
| c+2b |
| b+c |
| 1 |
| 1+t |
∵函数g(t)=2-
| 1 |
| 1+t |
∴该函数的值域是(-∞,
| 3 |
| 2 |
∴当c>|b|时,M的取值集合为[
| 3 |
| 2 |
当c=|b|时,由c≥
| b2 |
| 4 |
c2-b2=0,从而f(c)-f(b)≤
| 3 |
| 2 |
综上所述,M的最小值为
| 3 |
| 2 |
故答案为:
| 3 |
| 2 |
| b2 |
| 4 |
| b2 |
| 4 |
| |b| |
| 2 |
| f(c)-f(b) |
| c2-b2 |
| c2-b2+bc-b2 |
| c2-b2 |
| c+2b |
| b+c |
| b |
| c |
| c+2b |
| b+c |
| 1 |
| 1+t |
| 1 |
| 1+t |
| 3 |
| 2 |
| 3 |
| 2 |
| b2 |
| 4 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |