题目
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅰ)求函数k(x)的表达式;
(Ⅱ)求证:
| 1 |
| k(1) |
| 1 |
| k(2) |
| 1 |
| k(n) |
| 2n |
| n+2 |
答案
由g(x)=k(x)-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
又k(-1)=0,所以a-b+c=0,即a+c=
| 1 |
| 2 |
又因为k(x)≤
| 1 |
| 2 |
| 1 |
| 2 |
即对一切实数x,不等式(a-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
显然,当a=
| 1 |
| 2 |
当a≠
| 1 |
| 2 |
解析 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| k(1) |
| 1 |
| k(2) |
| 1 |
| k(n) |
| 2n |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解析 |