题目
1 |
3 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(Ⅰ)求函数k(x)的表达式;
(Ⅱ)求证:
1 |
k(1) |
1 |
k(2) |
1 |
k(n) |
2n |
n+2 |
答案
由g(x)=k(x)-
1 |
2 |
1 |
2 |
1 |
2 |
又k(-1)=0,所以a-b+c=0,即a+c=
1 |
2 |
又因为k(x)≤
1 |
2 |
1 |
2 |
即对一切实数x,不等式(a-
1 |
2 |
1 |
2 |
1 |
2 |
显然,当a=
1 |
2 |
当a≠
1 |
2 |
解析 |
1 |
3 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
k(1) |
1 |
k(2) |
1 |
k(n) |
2n |
n+2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
解析 |