题目
| x+1 |
| x-1 |
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)对于x∈[2,6],f(x)=ln
| x+1 |
| x-1 |
| m |
| (x-1)(7-x) |
答案
| x+1 |
| x-1 |
当x∈(-∞,-1)∪(1,+∞)时,f(-x)=ln
| -x+1 |
| -x-1 |
| x-1 |
| x+1 |
| x+1 |
| x-1 |
| x+1 |
| x-1 |
∴f(x)=ln
| x+1 |
| x-1 |
(2)由x∈[2,6]时,f(x)=ln
| x+1 |
| x-1 |
| m |
| (x-1)(7-x) |
∴
| x+1 |
| x-1 |
| m |
| (x-1)(7-x) |
∵x∈[2,6],∴0<m<(x+1)(7-x)在x∈[2,6]成立…(8分)
令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],
由二次函数的性质可知x∈[2,3]时函数单调递增,x∈[3,6]时函数单调递减,
∴x∈[2,6]时,g(x)min=g(6)=7
∴0<m<7….(12分)