已知函数f(x)=x3-9x2cosα+48xc

难度:一般 题型:解答题 来源:辽宁

题目

已知函数f(x)=x3-9x2cosα+48xcosβ+18sin2α,g(x)=f"(x),且对任意的实数t均有g(1+cost)≥0,g(3+sint)≤0.
(I)求函数f(x)的解析式;
(II)若对任意的m∈[-26,6],恒有f(x)≥x2-mx-11,求x的取值范围.

答案

(1)g(x)=f"(x)=3x2-18xcosα+48cosβ
对任意的实数t,1+cost∈[0,2],3+sint∈[2,4].
对任意的实数t有g(1+cost)≥0,g(3+sint)≤0
即对任意的实数x∈[0,2]有g(x)≥0,x∈[2,4]时有g(x)≤0

解析