题目
| 1 |
| 2 |
(1)证明:{logt(xn-1)+1}是等比数列;
(2)当Dn+1⊊Dn对一切n∈N*恒成立时,求t的取值范围;
(3)记数列{an}的前n项和为Sn,当t=
| 1 |
| 4 |
答案
∴2xn=
| an2-1 |
| an-1 |
| an+1 |
| 2 |
由xn+1=tf(xn+1-1)+1,得xn+1-1=t(xn-1)2,
∴logt(xn+1-1)=1+2logt(xn-1),
即logt(xn+1-1)+1=2[logt(xn-1)+1],
∴{logt(xn-1)+1}是首项为logt2+1,公比为2的等比数列.
(2)由(1)得logt(xn-1)+1=(logt2+1)•2n-1,
∴xn=1+
| 1 |
| t |
从而an=2xn-1=1+
| 2 |
| t |
由Dn+1⊊Dn对一切n∈N*恒成立,
得an+1<an,
即(2t)2n<(2t)2n-1,
∴0<2t<1,
即0<t<
| 1 |
| 2 |
(3)当t=
| 1 |
| 4 |
| 1 |
| 2 |
∴Sn=n+8[
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
当n≤3时,2n-1≤n+1;
当n≥4时,2n-1>n+1,
∴当n≤3时,Sn≤n+8[
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 13 |
| 2 |
当n≥4时,Sn<n+8[
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=n+7-(
| 1 |
| 2 |
<n+7.
综上所述,对任意的n∈N*,都有Sn<n+7.