已知函数f(x)=lnx-ax,g(x)=

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=lnx-

a
x
,g(x)=f(x)+ax-6lnx,其中a∈R
(1)当a=1时,判断f(x)的单调性;
(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(3)设函数h(x)=x2-mx+4,当a=2时,若∃x1∈(0,1),∀x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.

答案

(1)当a=1时,f(x)=lnx-

1
x

∴f′(x)=
1
x
+
1
x2
=
x+1
x2
,x>0.
∵x>0,∴f′(x)>0,
∴f(x)在(0,+∞)上是增函数.
(2)∵f(x)=lnx-
a
x
,g(x)=f(x)+ax-6lnx,a>0.
∴g(x)=ax-
a
x
-5lnx,x>0
∴g′(x)=a+
1
x2
-
5
x
=
ax2-5x+a
x2

若g′(x)>0,可得ax2-5x+a>0,在x>0上成立,
∴a>
5x
x2+1
=
5
x+
1
x

5
x+
1
x
5
2

解析