题目
| a |
| x |
(Ⅰ)若a=b=1,x∈[
| 1 |
| 2 |
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若对于任意的a∈[
| 1 |
| 2 |
| 1 |
| 4 |
答案
| 1 |
| x |
根据特殊函数y=+x
| 1 |
| x |
| 1 |
| 2 |
而 f(1)=3,f(
| 1 |
| 2 |
| 7 |
| 2 |
所以:f(x)∈[3,
| 7 |
| 2 |
(Ⅱ)f′(x)=1-
| a |
| x2 |
当a≤0时,显然f"(x)>0(x≠0).这时f(x)在(-∞,0),(0,+∞)上内是增函数.
当a>0时,令f"(x)=0,解得x=±
解析 |
| a |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| x |
| 1 |
| x |
| 1 |
| 2 |
| 1 |
| 2 |
| 7 |
| 2 |
| 7 |
| 2 |
| a |
| x2 |
解析 |