定义在R上的奇函数f(x)有最小正周期2,且当x

难度:一般 题型:解答题 来源:不详

题目

定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x+2-x
(1)求f(x)在[-1,0)上的解析式;
(2)判断f(x)在(-2,-1)上的单调性,并给予证明.

答案

解;(1)因为奇函数f(x)的定义域为R,周期为2,
所以f(-1)=f(-1+2)=f(1),且f(-1)=-f(1),于是f(-1)=0.…(2分)
当x∈(-1,0)时,-x∈(0,1),f(x)=-f(-x)=-(2-x+2x)=-2x-2-x.…(5分)
所以f(x)在[-1,0)上的解析式为f(x)=

解析