题目
| log | (4x+1)4 |
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.
答案
| log | (4x+1)4 |
可知f(-x)=f(x),
即
| log | (4x+1)4 |
| log | (4-x+1)4 |
即
| log |
|
| log | 4x4 |
即x=-2kx对x∈恒成立,
∴k=-
| 1 |
| 2 |
(2)g(x)=
| 4x+1 |
| 2x |
| 1 |
| 2x |
∵x∈[0,2],∴1≤2x≤4
∴g(x)在区间[0,2]上单调递增
∴g(x)max=
| 9 |
| 4 |
| log | (4x+1)4 |
| log | (4x+1)4 |
| log | (4x+1)4 |
| log | (4-x+1)4 |
| log |
|
| log | 4x4 |
| 1 |
| 2 |
| 4x+1 |
| 2x |
| 1 |
| 2x |
| 9 |
| 4 |