题目
log | (4x+1)4 |
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.
答案
log | (4x+1)4 |
可知f(-x)=f(x),
即
log | (4x+1)4 |
log | (4-x+1)4 |
即
log |
|
log | 4x4 |
即x=-2kx对x∈恒成立,
∴k=-
1 |
2 |
(2)g(x)=
4x+1 |
2x |
1 |
2x |
∵x∈[0,2],∴1≤2x≤4
∴g(x)在区间[0,2]上单调递增
∴g(x)max=
9 |
4 |
log | (4x+1)4 |
log | (4x+1)4 |
log | (4x+1)4 |
log | (4-x+1)4 |
log |
|
log | 4x4 |
1 |
2 |
4x+1 |
2x |
1 |
2x |
9 |
4 |