题目
| x2 |
| 2 |
(1)当b<a<1,f(1)=0,且函数y=2f(x)+1的零点,证明:-
| 3 |
| 2 |
| 1 |
| 2 |
(2)当b=1时,若不等式f(x)≤g(x)在x∈(
| 1 |
| 2 |
答案
| 2b+1 |
| 2 |
又b<a<1,
∴b<-
| 2b+1 |
| 2 |
解得-
| 3 |
| 2 |
| 1 |
| 4 |
且函数y=2f(x)+1的零点,即x2+2ax+2b+1=0有实根
∴△=4a2-4(2b+1)≥0
将a=-
| 2b+1 |
| 2 |
解得b≤-
| 1 |
| 2 |
| 3 |
| 2 |
由①②得-
| 3 |
| 2 |
| 1 |
| 2 |
(II)当b=1时,f(x)=
| x2 |
| 2 |
得ax≤ex-
| 1 |
| 2 |
| 1 |
| 2 |
即a≤
ex-
| ||
| x |
| 1 |
| 2 |
令g(x)=
ex-
| ||
| x |
ex(x-1)-
| ||
| x2 |
令h(x)=ex(x-1)-
| 1 |
| 2 |
∵x∈(
| 1 |
| 2 |
∴h′(x)>0
即h(x)在(
| 1 |
| 2 |
∴h(x)≥h(
| 1 |
| 2 |
| 7 |
| 8 |
|