已知函数f(x)=ax3+bx2+cx+d(a,

难度:一般 题型:解答题 来源:广东模拟

题目

已知函数f(x)=ax3+bx2+cx+d(a,b,c,d∈R,且a≠0),且函数f(x)图象关于原点中心对称,其图象在x=3处的切线方程为8x-y-18=0,
g(x)=f/(x)+f/(

答案

(1)因为函数f(x)关于原点对称,所以b=d=0,所以f(x)=ax3+cx,
又有f′(x)=3ax2+c,又函数f(x)在x=3处的切线方程为8x-y-18=0,
所以f′(3)=3a×9+c=8,f(3)=27a+3c=6,
所以a=
1
3
,c=-1
f(x)=
1
3
x3-x


(2)f(x)>
3
2
x2-3x+a2+a
在[0,2]上恒成立,即f(x)-
3
2
x2+3x>a2+a

即证
1
3
x3-
3
2
x2+2x>a2+a
在[0,2]上恒成立,
h(x)=
1
3
x3-
3
2
x2+2x
,则h′(x)=x2-3x+2,令h′(x)=x2-3x+2=0,
则x1=1,x2=2
则有当x<1时,f′(x)>0,所以f(x)在(-∞,1)递增;
当1<x<3时,f′(x)<0,所以f(x)在(1,3)递减;
当x>3时,f′(x)>0,所以f(x)在(-∞,1)递增;
所以h(0)=0,h(2)=
2
3

所以函数h(x)在[0,2]的最小值为0,所以有0>a2+a,即-1<a<0

(3)g(x)=f/(x)+f/(

解析