已知函数f(x)=x+ax2+b是定义在

难度:一般 题型:解答题 来源:盐城二模

题目

已知函数f(x)=

x+a
x2+b
是定义在R上的奇函数,其值域为[-
1
4
1
4
].
(1)试求a、b的值;
(2)函数y=g(x)(x∈R)满足:①当x∈[0,3)时,g(x)=f(x);②g(x+3)=g(x)lnm(m≠1).
①求函数g(x)在x∈[3,9)上的解析式;
②若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.

答案

(1)由函数f(x)定义域为R,∴b>0.
又f(x)为奇函数,则f(-x)=-f(x)对x∈R恒成立,得a=0.(2分)
因为y=f(x)=

x
x2+b
的定义域为R,所以方程yx2-x+by=0在R上有解.
当y≠0时,由△≥0,得-
1
2

解析