题目
(I)求a的值;
(II)求λ的取值范围;
(III)若g(x)≤t2+λt+1在x∈[-1,1]上恒成立,求t的取值范围.
答案
(2)g(x)=λf(x)+sinx是区间[-1,1]上的减函数g′(x)=λ+cosx≤0在[-1,1]上恒成立∴λ≤-cosx.…(5分)
又∵cosx∈[cos1,1],∴-cosx∈[-1,-cos1].∴λ≤-1.…(8分)
(3)∵g(x)在区间[-1,1]上单调递减,∴g(x)max=g(-1)=-λ-sin1.
只需-λ-sin1≤t2+λt+1.∴(t+1)λ+t2+sin1+1≥0.
|
令h(λ)=(t+1)λ+t2+sin1+1,
则
解析 |