题目
| a |
| x |
(Ⅰ)当a=1时,求函数F(x)的单调区间;
(Ⅱ)若以函数y=F(x)(0<x≤3)图象上任意一点P(x0,y0)为切点的切线斜率k≤
| 1 |
| 2 |
答案
| 1 |
| x |
则F′(x)=
| 1 |
| x |
| 1 |
| x2 |
| x-1 |
| x2 |
由F′(x)=
| 1 |
| x |
| 1 |
| x2 |
| x-1 |
| x2 |
F′(x)=
| 1 |
| x |
| 1 |
| x2 |
| x-1 |
| x2 |
(Ⅱ)由题意可知k=F′(x0)=
| x0-a | ||
|
| 1 |
| 2 |
即有x0-
| 1 |
| 2 |
| x | 20 |
| 1 |
| 2 |
| x | 20 |
令t=x0-
| 1 |
| 2 |
| x | 20 |
| 1 |
| 2 |
| x | 20 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
则a≥
| 1 |
| 2 |
| 1 |
| 2 |