题目
(1)证明:数列{an+3}是等比数列;
(2)对k∈N*,设f(n)=
答案 | |||||||
(1)∵a1=1,Sn+1=2Sn+3n+1,∴S2=2S1+4=a1+a2.∴a2=5. 又当n≥2时,Sn=2Sn-1+3(n-1)+1,∴Sn+1-Sn=2(Sn-Sn-1)+3, 即得an+1=2an+3.an+1+3=2(an+3),(n≥2).----------------------------(4分)
(2)由(1),知an+3=4•2n-1.∴an=2n+1-3,Sn=
∴f(n)=
|