已知数列{an}的前N项和为Sn,a1=1,Sn

难度:一般 题型:解答题 来源:不详

题目

已知数列{an}的前N项和为Sn,a1=1,Sn+1=2Sn+3n+1(n∈N*).
(1)证明:数列{an+3}是等比数列;
(2)对k∈N*,设f(n)=

答案

(1)∵a1=1,Sn+1=2Sn+3n+1,∴S2=2S1+4=a1+a2.∴a2=5.
又当n≥2时,Sn=2Sn-1+3(n-1)+1,∴Sn+1-Sn=2(Sn-Sn-1)+3,
即得an+1=2an+3.an+1+3=2(an+3),(n≥2).----------------------------(4分)
a2+3
a1+3
=
8
4
=2
,∴数列{an+3}是公比为2,首项为a1+3=4的等比数列.…(2分)
(2)由(1),知an+3=4•2n-1.∴an=2n+1-3,Sn=
4(1-2n)
1-2
-3n=2n+2-3n-4

f(n)=

解析