题目
| 2 |
| 2x+1 |
(1)若f(x)为奇函数,求实数a的值;
(2)判断并证明f(x)的单调性.
答案
| 2 |
| 2x+1 |
| 2 |
| 2-x+1 |
(2)函数y=2x单调递增,易判断f(x)在定义域R上单调递增,证明如下:
任取x1<x2∈R,f(x1)-f(x2)=a-
| 2 |
| 2x1+1 |
| 2 |
| 2x2+1 |
| 2x1-2x2 |
| (2x1+1)(2x2+1) |
∴0<zx1<2x2
∴f(x1)-f(x2)<0
∴f(x)在定义域R上单调递增
| 2 |
| 2x+1 |
| 2 |
| 2x+1 |
| 2 |
| 2-x+1 |
| 2 |
| 2x1+1 |
| 2 |
| 2x2+1 |
| 2x1-2x2 |
| (2x1+1)(2x2+1) |