设对所有实数x,不等式x2log24(a+1)

难度:一般 题型:填空题 来源:闸北区二模

题目

设对所有实数x,不等式x2log2

4(a+1)
a
+2xlog2
2a
a+1
+log2
(a+1)2
4a2
>0恒成立,则a的取值范围为______.

答案

∵不等式x2log2

4(a+1)
a
+2xlog2
2a
a+1
+log2
(a+1)2
4a2
>0恒成立
由二次不等式的性质可得,log2
4(a+1)
a
>0
△=4(log2
2a
a+1
)2-log2
4(a+1)
a
•log2
(a+1)2
4a2
×4<0
令t=log2
a+1
a

(1+log2
a
a+1
)2-(2+log2
a+1
a
)
(2log2
a+1
a
-2)<0

整理可得,(log2
a+1
a
+5)(log2
a+1
a
-1)>0

log2
4(a+1)
a
>0

log2
a+1
a
>1

解可得,0<a<1
故答案为:0<a<1

解析

闽ICP备2021017268号-8