题目
| 4(a+1) |
| a |
| 2a |
| a+1 |
| (a+1)2 |
| 4a2 |
答案
| 4(a+1) |
| a |
| 2a |
| a+1 |
| (a+1)2 |
| 4a2 |
由二次不等式的性质可得,log2
| 4(a+1) |
| a |
| 2a |
| a+1 |
| 4(a+1) |
| a |
| (a+1)2 |
| 4a2 |
令t=log2
| a+1 |
| a |
即(1+log2
| a |
| a+1 |
| a+1 |
| a |
| a+1 |
| a |
整理可得,(log2
| a+1 |
| a |
| a+1 |
| a |
∵log2
| 4(a+1) |
| a |
∴log2
| a+1 |
| a |
解可得,0<a<1
故答案为:0<a<1
| 4(a+1) |
| a |
| 2a |
| a+1 |
| (a+1)2 |
| 4a2 |
| 4(a+1) |
| a |
| 2a |
| a+1 |
| (a+1)2 |
| 4a2 |
| 4(a+1) |
| a |
| 2a |
| a+1 |
| 4(a+1) |
| a |
| (a+1)2 |
| 4a2 |
| a+1 |
| a |
| a |
| a+1 |
| a+1 |
| a |
| a+1 |
| a |
| a+1 |
| a |
| a+1 |
| a |
| 4(a+1) |
| a |
| a+1 |
| a |