题目
①f(x)=0 是常数函数中唯一个“λ-伴随函数”;
②f(x)=x不是“λ-伴随函数”;
③f(x)=x2是一个“λ-伴随函数”;
④“
| 1 |
| 2 |
其中不正确的序号是______(填上所有不正确的结论序号).
答案
②∵f(x)=x,∴f(x+λ)+λf(x)=x+λ+λx,当λ=-1时,f(x+λ)+λf(x)=-1≠0;λ≠-1时,f(x+λ)+λf(x)=0有唯一解,∴不存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,∴(x)=x不是“λ-伴随函数”,故②正确;
③用反证法,假设f(x)=x2是一个“λ-伴随函数”,则(x+λ)2+λx2=0,即(1+λ)x2+2λx+λ2=0对任意实数x成立,所以λ+1=2λ=λ2=0,而此式无解,所以f(x)=x2不是一个“λ-伴随函数”,故③不正确;
④令x=0,得f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
若f(0)=0,显然f(x)=0有实数根;若f(0)≠0,f(
| 1 |
| 2 |
| 1 |
| 2 |
又因为f(x)的函数图象是连续不断,所以f(x)在(0,
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:①③