定义在R上的函数f(x),如果存在函数g(x)=

难度:一般 题型:填空题 来源:河池模拟

题目

定义在R上的函数f(x),如果存在函数g(x)=kx+b(k,b为常数),使得f(x)≥g(x)对一切实数x都成立,则称g(x)为函数f(x)的一个承托函数.
现有如下函数:
①f(x)=x3
②f(x)=2-x
f(x)=

答案

函数g(x)=kx+b(k,b为常数)是函数f(x)的一个承托函数,即说明函数f(x)的图象恒在函数g(x)的上方(至多有一个交点)
①f(x)=x3的值域为R,所以不存在函数g(x)=kx+b,使得函数f(x)的图象恒在函数g(x)的上方,故不存在承托函数;
②f(x)=2-x>0,所以y=A(A≤0)都是函数f(x)的承托函数,故②存在承托函数;
③∵f(x)=

解析