题目
| lg2ax |
| lg(a+x) |
答案
∴lg(a+x)>0
∵
| lg2ax |
| lg(a+x) |
∴lg2ax<lg(a+x),即2ax<a+x
∴(2a-1)x<a总成立
(1)a>
| 1 |
| 2 |
| a |
| 2a-1 |
| a |
| 2a-1 |
| a |
| 2a-1 |
∴
| 1 |
| 2 |
| 2 |
| 3 |
(2)a=
| 1 |
| 2 |
| 1 |
| 2 |
∴1<x≤2时不等式总成立
(3)0<a<
| 1 |
| 2 |
| a |
| 2a-1 |
| a |
| 2a-1 |
∴a≤1,
综合0<a<
| 1 |
| 2 |
| 1 |
| 2 |
综上三类讨论可得,0<a<
| 2 |
| 3 |
| lg2ax |
| lg(a+x) |
| lg2ax |
| lg(a+x) |
| 1 |
| 2 |
| a |
| 2a-1 |
| a |
| 2a-1 |
| a |
| 2a-1 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| a |
| 2a-1 |
| a |
| 2a-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |