题目
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式;
(3)是否存在k∈N*,使得
| S1 |
| 1 |
| S2 |
| 2 |
| Sn |
| n |
答案
∴a32+2a3a5+a52=25,
∴(a3+a5)2=25,
又an>0,∴a3+a5=5,
又a3与a5的等比中项为2,
∴a3a5=4.
而q∈(0,1),
∴a3>a5,∴a3=4,a5=1,
∴q=
| 1 |
| 2 |
| 1 |
| 2 |
(2)∵bn=log2an=5-n,∴bn+1-bn=-1,
b1=log2a1=log216=log224=4,
∴{bn}是以b1=4为首项,-1为公差的等差数列,
∴Sn=
| n(9-n) |
| 2 |
(3)由(2)知Sn=
| n(9-n) |
| 2 |
| Sn |
| n |
| 9-n |
| 2 |
当n≤8时,
| Sn |
| n |
| Sn |
| n |
当n>9时,
| Sn |
| n |
∴当n=8或9时,
| S1 |
| 1 |
| S2 |
| 2 |
| S3 |
| 3 |
| Sn |
| n |
故存在k∈N*,使得
| S1 |
| 1 |
| S2 |
| 2 |
| Sn |
| n |