设定义在R上的函数f(x)=a0x4+a1x3+

难度:一般 题型:解答题 来源:宣武区一模

题目

设定义在R上的函数f(x)=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4∈R),当x=-1时f(x)取得极大值

2
3
,且函数y=f(x+1)的图象关于点(-1,0)对称.
(1)求函数f(x)的表达式;
(2)试在函数y=f(x)的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间[-

答案

(1)将函数y=f(x+1)的图象向右平移一个单位,得到函数y=f(x)的图象,
∴函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)是奇函数,
∴f(x)=a1x3+a3x
∴f(x)=3a1x2+a3
由题意得:

解析