已知函数f(x)=x2-2tx+1,x∈[2,5
难度:一般
题型:解答题
来源:上海模拟
题目
|
已知函数f(x)=x2-2tx+1,x∈[2,5]有反函数,且函数f(x)的最大值为8,求实数t的值. |
答案
因为函数有反函数,所以在定义域内是一一对应的函数f(x)=x2-2tx+1的对称轴为x=t,所以t≤2或t≥5 若t≤2,在区间[2,5]上函数是单调递增的,所以f(x)max=f(5)=25-10t+1=8,解得t=,符合 若t≥5,在区间[2,5]上函数是单调递减的,所以f(x)max=f(2)=4-4t+1=8,解得t=-,与t≥5矛盾,舍去 综上所述,满足题意的实数t的值为
|
解析