设函数f(x)在(-∞,+∞)上满足f(x)=f 难度:一般 题型:填空题 来源:不详 2023-10-09 21:00:02 题目 设函数f(x)在(-∞,+∞)上满足f(x)=f(4-x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0,则函数f(x)的最小正周期为______,方程f(x)=0在闭区间[-2005,2005]上有______个根. 答案 由 f(x)在R上满足f(x)=f(4-x),f(7-x)=f(7+x),⇒f(x)=f(4-x),f(x)=f(14-x)⇒f(4-x)=f(14-x)⇒f(x)=f(x+10)故函数f(x)的最小正周期为 10.又f(3)=f(1)=0⇒f(11)=f(13)=f(-7)=f(-9)=0故f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数y=f(x)在[0,2005]上有402个解,在[-2005,0]上有400个解,所以函数y=f(x)在[-2005,2005]上有802个解.故答案为:10,802. 解析