已知函数f(x)=x2+2x+alnx(a∈R)

难度:简单 题型:单选题 来源:不详

题目

已知函数f(x)=x2+2x+alnx(a∈R).当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围(  )

A.(-∞,1) B.(-∞,2) C.(-∞,1] D.(-∞,2]

答案

∵f(x)=x2+2x+alnx(a∈R).
当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,
∴2t2-4t+2≥alnt2-aln(2t-1)
∴2t2-alnt2≥2(2t-1)-aln(2t-1)
令h(x)=2x-alnx(x≥1),则问题可化为h(t2)≥h(2t-1)
∵t≥1,∴t2≥2t-1
要使上式成立,只需要h(x)=2x-alnx(x≥1)是增函数即可
即g′(x)=2-

a
x
≥0在[1,+∞)上恒成立,
即a≤2x在[1,+∞)上恒成立,故a≤2
∴实数a的取值范围是(-∞,2].
故选D.

解析

闽ICP备2021017268号-8