设定义在R上的函数f(x)=a0x4+a1x3+

难度:一般 题型:解答题 来源:朝阳区二模

题目

设定义在R上的函数f(x)=a0x4+a1x3+a2x2+a3x+a4,a0,a1,a2,a3,a4∈R,当x=-1时,f(x)取得极大值

2
3
,且函数y=f(x+1)的图象关于点(-1,0)对称.
(Ⅰ)求f(x)的表达式;
(Ⅱ)在函数y=f(x)的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在[-

答案

(Ⅰ)将y=f(x+1)的图象向右平移1个单位,得到y=f(x)的图象,
所以y=f(x)的图象关于点(0,0)对称,即y=f(x)是奇函数,
所以f(x)=a1x3+a3x,由题意,得

解析