题目
| π |
| 2 |
| 3 |
| 2 |
| A.cosx+1 | B.cosx-1 | C.-cosx-1 | D.-cosx+1 |
答案
| 3π |
| 2 |
| π |
| 2 |
∵f(-x)=-f(x),f(π-x)=f(x)
∴f(2π-x)=f[π-(x-π)]=f(x-π)=-f(π-x)=-f(x)
而当x∈[0,
| π |
| 2 |
则f(2π-x)=cos(2π-x)-1=cosx-1=-f(x)
∴f(x)=-cosx+1
故选D.
| π |
| 2 |
| 3 |
| 2 |
| A.cosx+1 | B.cosx-1 | C.-cosx-1 | D.-cosx+1 |
| 3π |
| 2 |
| π |
| 2 |
| π |
| 2 |