题目
a2x-1 |
2x+1 |
(1)求a的值;
(2)求f(x)的反函数;
(3)对任意的k∈(0,+∞)解不等式f-1(x)>log2
1+x |
k |
答案
此时f(x)+f(-x)=
2x-1 |
2x+1 |
2-x-1 |
2-x+1 |
2x-1 |
2x+1 |
1-2x |
1+2x |
即f(x)为奇函数.
(2)∵y=
2x-1 |
2x+1 |
2 |
2x+1 |
1+y |
1-y |
∴f-1(x)=log2
1+x |
1-x |
(3)∵f-1(x)>log2
1+x |
k |
解析 |
a2x-1 |
2x+1 |
1+x |
k |
2x-1 |
2x+1 |
2-x-1 |
2-x+1 |
2x-1 |
2x+1 |
1-2x |
1+2x |
2x-1 |
2x+1 |
2 |
2x+1 |
1+y |
1-y |
1+x |
1-x |
1+x |
k |
解析 |