题目
| a2x-1 |
| 2x+1 |
(1)求a的值;
(2)求f(x)的反函数;
(3)对任意的k∈(0,+∞)解不等式f-1(x)>log2
| 1+x |
| k |
答案
此时f(x)+f(-x)=
| 2x-1 |
| 2x+1 |
| 2-x-1 |
| 2-x+1 |
| 2x-1 |
| 2x+1 |
| 1-2x |
| 1+2x |
即f(x)为奇函数.
(2)∵y=
| 2x-1 |
| 2x+1 |
| 2 |
| 2x+1 |
| 1+y |
| 1-y |
∴f-1(x)=log2
| 1+x |
| 1-x |
(3)∵f-1(x)>log2
| 1+x |
| k |
解析 |
| a2x-1 |
| 2x+1 |
| 1+x |
| k |
| 2x-1 |
| 2x+1 |
| 2-x-1 |
| 2-x+1 |
| 2x-1 |
| 2x+1 |
| 1-2x |
| 1+2x |
| 2x-1 |
| 2x+1 |
| 2 |
| 2x+1 |
| 1+y |
| 1-y |
| 1+x |
| 1-x |
| 1+x |
| k |
解析 |