题目
(1)求数列{an}的通项公式;
(2)若bn=log2|an|,设Tn为数列{
| 1 |
| bnbn+1 |
答案
∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4
所以a4=-2a3
∴q=-2
an=a1qn-1=(-2)n+1
(2)bn=log2|an|=log22n+1=n+1
| 1 |
| bnbn+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
Tn=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
λ≥
| Tn |
| bn+1 |
| n |
| 2(n+2)2 |
| 1 |
| 2 |
| 1 | ||
n+
|
因为n+
| 4 |
| n |
| 1 |
| 2 |
| 1 | ||
n+
|
| 1 |
| 16 |
所以λ最小值为
| 1 |
| 16 |