题目
(1)求数列{an}的通项公式;
(2)若bn=log2|an|,设Tn为数列{
1 |
bnbn+1 |
答案
∴2S2=S3+S4即2(a1+a2)=2(a1+a2+a3)+a4
所以a4=-2a3
∴q=-2
an=a1qn-1=(-2)n+1
(2)bn=log2|an|=log22n+1=n+1
1 |
bnbn+1 |
1 |
(n+1)(n+2) |
1 |
n+1 |
1 |
n+2 |
Tn=(
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
n+2 |
λ≥
Tn |
bn+1 |
n |
2(n+2)2 |
1 |
2 |
1 | ||
n+
|
因为n+
4 |
n |
1 |
2 |
1 | ||
n+
|
1 |
16 |
所以λ最小值为
1 |
16 |