已知函数f(x)=ln(ex+a)(a为常数)求

难度:一般 题型:解答题 来源:茂名一模

题目

已知函数f(x)=ln(ex+a)(a为常数)求实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求a的值;
(2)若g(x)≤t2+λt+1在x∈[-1,1]及λ所在的取值范围上恒成立,求t的取值范围;
(3)讨论关于x的方程

lnx
f(x)
=x2-2ex+m的根的个数.

答案

(1)因为函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,
所以f(-0)=-f(0)即f(0)=0,
则ln(e0+a)=0解得a=0,
a=0时,f(x)=x是实数集R上的奇函数;
(2)由(1)得f(x)=x所以g(x)=λx+sinx,g"(x)=λ+cosx,
因为g(x) 在[-1,1]上单调递减,∴g"(x)=λ+cosx≤0在[-1,1]上恒成立,
∴λ≤-1,g(x)max=g(-1)=-1-sin1,
只需-λ-sin1≤t2+λt+1(λ≤-1),
∴(t+1)λ+t2+sin1+1≥0(λ≤-1)恒成立,
令h(λ)=(t+1)+t2+sin1+1(λ≤-1)

解析