已知函数f(x)=x2+ax+b-2ln(x+1

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.
(Ⅰ)求实数a、b的值及函数f(x)的单调区间;
(Ⅱ)若当x∈[-

1
2
,e-1]时,不等式f(x)<m恒成立,求实数m的取值范围.

答案

(Ⅰ)x+1>0得 f(x)的定义域为(-1,+∞)f′(x)=2x+a-

2
x+1

∵函数f(x)=x2+ax+b-2ln(x+1)在x=0处取到极小值1.
∴f(0)=1,f"(0)=0∴a=2,b=1…(5分)
∴f(x)=x2+2x+1-2ln(x+1)
f(x)=2(1+x)-
2
1+x
=2[(1+x)-
1
1+x
]>0
x2+2x
1+x
>0
⇒x>0
f(x)=2(1+x)-
2
1+x
=2[(1+x)-
1
1+x
]>0
x2+2x
1+x
<0
⇒-1<x<0,
所以f(x)的单调增区间为(0,+∞);单调减区间(-1,0). …(10分)
(Ⅱ)当x∈[-
1
2
,e-1]
时,不等式f(x)<m恒成立,求实数m的取值范围.
令f(x)=0⇒(1+x)2=1⇒x=0或x=-2(舍)f(-
1
2
)=
1
4
+2ln2
,f(0)=1,f(e-1)=e2-2>f(-
1
2
)

∴当x∈[-
1
2
,e-1]
时,f(x)max=f(e-1)=e2-2
因此可得:不等式f(x)<m恒成立时,m>e2-2…(15分)

解析

闽ICP备2021017268号-8