设函数f(x)=(x-a)2lnx,a∈R,e为

难度:一般 题型:解答题 来源:不详

题目

设函数f(x)=(x-a)2lnx,a∈R,e为自然对数的底数,e=2.7182…,如果对任意的x∈(0,3e],恒有f(x)≤4e2成立,求a的取值范围.

答案

f"(x)=(x-a)(2ln x+1-

a
x
).
①当0<x≤1时,对于任意的实数a,恒有f(x)≤0<4e2成立
②当1<x≤3e时,由题意,首先有f(3e)=(3e-a)2ln3e≤4e2,解得3e-
2e

解析