题目
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).
答案
由f″(x)=0,即 6x-6=0.∴x=1,又 f(1)=2,
∴f(x)=x3-3x2+2x+2的“拐点”坐标是(1,2).
(2)由(1)知“拐点”坐标是(1,2).
而f(1+x)+f(1-x)=(1+x)3-3(1+x)2+2(1+x)+2+(1-x)3-3(1-x)2+2(1-x)+2
=2+6x2-6-6x2+4+4=4=2f(1),
由定义(2)知:f(x)=x3-3x2+2x+2关于点(1,2)对称.
(3)一般地,三次函数f(x)=ax3+bx2+cx+d (a≠0)的“拐点”是(-
b |
3a |
b |
3a |
(或者:任何一个三次函数都有拐点;任何一个三次函数都有对称中心;任何一个三次函数平移后可以是奇函数;都对.)