已知函数f(x)=lnx,g(x)=12x

难度:一般 题型:解答题 来源:浙江模拟

题目

已知函数f(x)=lnx,g(x)=

1
2
x2-bx(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与g(x)的图象相切,求实数b的值;
(2)设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b 的取值范围;
(3)若b>1,对于区间[1,2]上的任意两个不相等的实数x1,x2,都有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立,求b的取值范围.

答案

(1)f(x)=lnx得f′(x)=

1
x

函数f(x)的图象在点(1,f(1))处的切线的斜率为f′(1)=1,切线方程为:y-0=x-1即y=x-1.
由已知得它与g(x)的图象相切,将y=x-1代入得x-1=
1
2
x2-bx,即
1
2
x2-(b+1)x+1=0,
∴△=(b+1)2-2=0,解得b=±

解析