题目
| 3 |
| 4 |
| 1 | ||
f(x+
|
f(0)=-2,则f(0)+f(1)+…+f(2010)=______.
答案
| 1 | ||
f(x+
|
∴f(x+3)=-
| 1 | ||
f(x+
|
f(2)=f(-1+3)=f(-1)=1,又f(-1)=-
| 1 | ||
f(-1+
|
∴f(
| 1 |
| 2 |
∵函数f(x)的图象关于点(-
| 3 |
| 4 |
∴f(1)=-f(-
| 5 |
| 2 |
| 1 |
| 2 |
∴f(0)+f(1)+…+f(2010)=f(2010)=f(0)=-2.
故答案为:-2
| 3 |
| 4 |
| 1 | ||
f(x+
|
| 1 | ||
f(x+
|
| 1 | ||
f(x+
|
| 1 | ||
f(-1+
|
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 2 |
| 1 |
| 2 |