题目
3 |
4 |
1 | ||
f(x+
|
f(0)=-2,则f(0)+f(1)+…+f(2010)=______.
答案
1 | ||
f(x+
|
∴f(x+3)=-
1 | ||
f(x+
|
f(2)=f(-1+3)=f(-1)=1,又f(-1)=-
1 | ||
f(-1+
|
∴f(
1 |
2 |
∵函数f(x)的图象关于点(-
3 |
4 |
∴f(1)=-f(-
5 |
2 |
1 |
2 |
∴f(0)+f(1)+…+f(2010)=f(2010)=f(0)=-2.
故答案为:-2
3 |
4 |
1 | ||
f(x+
|
1 | ||
f(x+
|
1 | ||
f(x+
|
1 | ||
f(-1+
|
1 |
2 |
3 |
4 |
5 |
2 |
1 |
2 |