题目
| x1+x2 |
| 2 |
| f(x1)+f(x2) |
| 2 |
(1)求实数a的取值范围;
(2)对于给定的实数a,有一个最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立,则当a为何值时,M(a)最小,并求出M(a)的最小值.
答案
| x1+x2 |
| 2 |
| f(x1)+f(x2) |
| 2 |
=a(
| x1+x2 |
| 2 |
| x1+x2 |
| 2 |
| ax12+bx1+c+ax22+bx2+c |
| 2 |
=-
| a |
| 4 |
∵x1≠x2,∴a>0.∴实数a的取值范围为(0,+∞).
(2)∵f(x)=ax2+4x-2=a(x+
| 2 |
| a |
| 4 |
| a |
显然f(0)=-2,对称轴x=-
| 2 |
| a |
①当-2-
| 4 |
| a |
| 2 |
| a |
令ax2+4x-2=-4,解得x=
-2±
|