已知函数f(x)=ax2+4x-2,若对任意x1

难度:一般 题型:解答题 来源:广州二模

题目

已知函数f(x)=ax2+4x-2,若对任意x1,x2∈R且x1≠x2,都有f(

x1+x2
2
)<
f(x1)+f(x2)
2

(1)求实数a的取值范围;
(2)对于给定的实数a,有一个最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立,则当a为何值时,M(a)最小,并求出M(a)的最小值.

答案

(1)∵f(

x1+x2
2
)-
f(x1)+f(x2)
2

=a(
x1+x2
2
)2+b(
x1+x2
2
)+c-
ax12+bx1+c+ax22+bx2+c
2

=-
a
4
(x1-x2)2<0

∵x1≠x2,∴a>0.∴实数a的取值范围为(0,+∞).
(2)∵f(x)=ax2+4x-2=a(x+
2
a
)2-2-
4
a

显然f(0)=-2,对称轴x=-
2
a
<0

①当-2-
4
a
<-4
,即0<a<2时,M(a)∈(-
2
a
,0)
,且f[M(a)]=-4.
令ax2+4x-2=-4,解得x=
-2±

解析