题目
| a(x2-1) |
| x(a2-1) |
求证:
(1)过函数y=f(x)图象上任意两点直线的斜率恒大于0;
(2)f(3)>3.
答案
| a |
| a2-1 |
∴f(x)=
| a |
| a2-1 |
设x1<x2,f(x1)-f(x2)=
| a(ax1-ax2)(ax1+x2+1) |
| (a2-1)ax1+x2 |
(1)当a>1时,因为x10,ax1-ax2<0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-∞,+∞)上单调递增;
(2)当0<a<1时,因为a2-1<0,ax1-ax2>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在(-∞,+∞)上单调递增;
∴x1<x2时,恒有f(x1)<f(x2),∴K=
| f(x1)-f(x2) |
| x1-x2 |
故过函数y=f(x)图象上任意两点直线的斜率恒大于0;
(2)f(3)=
| a |
| a2-1 |
| a(a6-1) |
| a3(a2-1) |
| a4+a2+1 |
| a2 |
| 1 |
| a2 |
解析 |