题目
(Ⅰ)求f(1)的值;
(Ⅱ)求证:c≥3a;
(Ⅲ)若a>0,函数f(sinα)的最大值为8,求b的值.
答案
(1)取α=
| π |
| 2 |
取β=π,得f(2+cosβ)=f(1)=a+b+c≤0
∴f(1)=0
(2)证:取β=0,得f(2+cosβ)=f(3)=9a+3b+c≤0
由(1)得f(1)=a+b+c=0,∴b=-(a+c)代入得9a-3(a+c)+c≤0
∴c≥3a
(3)设sinx=t,则-1≤t≤1又b=-(a+c),
∴f(sinx)=f(t)=at2-(a+c)t+c=a(t-
| a+c |
| 2a |
| (a+c) |
| 4a |
∵a>0,c≥3a,
∴
| a+c |
| 2a |
| a+3a |
| 2a |
∴二次函数f(t)在t∈[-1,1]上递减
∴t=-1时,f(x)最大=a+(a+c)+c=8
∴a+c=4,b=-(a+c)=-4.