题目
| x2+a |
| bx-c |
| 1 |
| 2 |
(1)试求函数f(x)的表达式;
(2)已知各项不为0的数列{an}满足4Sn•f(
| 1 |
| an |
答案
| x2+a |
| bx-c |
⇒a=0且2b-c=2且b≠1
⇒f(x)=
| x2 | ||
(1+
|
由f(-2)<-
| 1 |
| 2 |
⇒c=2,b=2⇒f(x)=
| x2 |
| 2x-2 |
(2)由已知4Sn•f(
| 1 |
| an |
可得2Sn=an-an2,
当n≥2时,2Sn-1=an-1-an-12,
两式相减得an=-an-1,或an-an-1=-1.
当n=1时,a1=-1,
由an=-an-1⇒a2=1不在定义域范围内应舍去,
故an-an-1=-1⇒an=-n.