设a为实数,函数f(x)=x3+ax2+(a-2

难度:一般 题型:填空题 来源:不详

题目

设a为实数,函数f(x)=x3+ax2+(a-2)x的导函数是f"(x)是偶函数,则曲线y=f(x)在原点处的切线方程为______.

答案

∵f(x)=x3+ax2+(a-2)x
∴f"(x)=3x2+2ax+(a-2)
∵导函数是f"(x)是偶函数
∴a=0,则f"(x)=3x2-2
∴f"(0)=-2,在原点处的切线方程为y=-2x
故答案为y=-2x

解析

闽ICP备2021017268号-8