定义在R上的函数f(x)=ax3+bx2+cx+

难度:一般 题型:解答题 来源:烟台一模

题目

定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; ②f′(x)是偶函数;③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

答案

(Ⅰ)f′(x)=3ax2+2bx+c
∵f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,
∴f′(1)=3a+2b+c=0…①…(1分)
由f′(x)是偶函数得:b=0②…(2分)
又f(x)在x=0处的切线与直线y=x+2垂直,f′(0)=c=-1③…(3分)
由①②③得:a=

1
3
,b=0,c=-1,
f(x)=
1
3
x3-x+3
…(4分)
(Ⅱ)由已知得:
若存在x∈[1,e],使4lnx-m<x2-1,即存在x∈[1,e],使m>4lnx-x2+1
设h(x)=4lnx-x2+1
m>hmin,对h(x)求导,导数在(0,

解析