题目


(1)求函数f(x)的最小值.
(2)对于∀x1,x2∈[0,2],f(x1)>g(x2)恒成立,求实数a的取值范围.
答案

(2)a∈(-∞,-5)∪(1,+∞)
解析
当a≤1时,f(x)min=f(2)=a2+4a-3,
当a>1时,f(x)min=f(0)=1+a2,
所以f(x)min=

(2)令


所以g(x)=h(t)=-t2+t+

因为对称轴t=


由题意,要使对于∀x1,x2∈[0,2],f(x1)>g(x2)恒成立,只要f(x)min>g(x)max即可,
所以当a≤1时,f(x)min=a2+4a-3>2,
解得:a<-5,
当a>1时,f(x)min=1+a2>2,解得:a>1,
综上所述,a∈(-∞,-5)∪(1,+∞).