已知函数f(x)=x2-2x,g(x)=ax+2

难度:一般 题型:填空题 来源:不详

题目

已知函数f(x)=x2-2x,g(x)=ax+2,对任意的x1∈[-1,2],都存在x0∈[-1,2],使得g(x1)=f(x0),则实数a的取值范围是______.

答案

当x0∈[-1,2]时,由f(x)=x2-2x得,
f(x0)=[-1,3],
又∵任意的x1∈[-1,2],都存在x0∈[-1,2],使得g(x1)=f(x0),
∴当x1∈[-1,2]时,g(x1)⊆[-1,3]
当a<0时,

解析