题目
(1)试判断f(x)的奇偶性;
(2)若-
≤a≤
,求f(x)的最小值.
答案
解析
此时,f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,
f(a)≠f(-a),f(a)≠-f(-a),此时,f(x) 为非奇非偶函数.
(2)当x≤a时,f(x)=x2-x+a+1=(x-
)2+a+
,∵a≤
,故函数f(x)在(-∞,a]上单调递减,从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.
当x≥a时,函数f(x)=x2+x-a+1=(x+
)2-a+
,∵a≥-
,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.综上得,当-
≤a≤
时,函数f(x)的最小值为a2+1.