题目
(1)f(x)=|x+1|-|x-1|;(2)f(x)=(x-1)·
;(3)
;(4)
答案
解析
(1)函数的定义域x∈(-∞,+∞),对称于原点.
∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),
∴f(x)=|x+1|-|x-1|是奇函数.
(2)先确定函数的定义域.由
≥0,得-1≤x<1,其定义域不对称于原点,所以f(x)既不是奇函数也不是偶函数.(3)去掉绝对值符号,根据定义判断.
由
得
故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x+2>0.
从而有f(x)=
=
,∴f(-x)=
=-
=-f(x)故f(x)为奇函数.
(4)∵函数f(x)的定义域是(-∞,0)∪(0,+∞),并且当x>0时,-x<0,
∴f(-x)=(-x)[1-(-x)]=-x(1+x)=-f(x)(x>0).
当x<0时,-x>0,∴f(-x)=-x(1-x)=-f(x)(x<0).
故函数f(x)为奇函数.
1函数的奇偶性是函数的一个整体性质, 定义域具有对称性 ( 即若奇函数或偶函数的定义域为D, 则
时
) 是一个函数为奇函数或偶函数的必要条件2分段函数的奇偶性一般要分段证明.③判断函数的奇偶性应先求定义域再化简函数解析式.
题型2:证明抽象函数的奇偶性