已知函数f(x)=xlnx,g(x)=-x2+a

难度:一般 题型:解答题 来源:不详

题目

已知函数f(x)=xlnx,g(x)=-x2+ax-3,其中a为实数.
(1)设t>0为常数,求函数f(x)在区间[t,t+2]上的最小值;
(2)若对一切x∈(0,+∞),不等式2f(x)≥g(x)恒成立,求实数a的取值范围.

答案

(1)f"(x)=lnx+1,
x∈(0,

1
e
),f′(x)<0,f(x)单调递减,当x∈(
1
e
,+∞),f′(x)>0,f(x)
单调递增
0<t<t+2<
1
e
,没有最小值;
0<t<
1
e
<t+2
,即0<t<
1
e
时,f(x)min=f(
1
e
)=-
1
e

1
e
≤t<t+2
,即t≥
1
e
时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt;(5分)
所以f(x)min=

解析