题目
| 2 |
| 2x+1 |
(1)f(x)为奇函数,试确定a的值;
(2)若不等式f(x)+a>0恒成立,求实数a的取值范围.
答案
∴f(-x)=-f(x),即a-
| 2 |
| 2-x+1 |
| 2 |
| 2x+1 |
∴2a=
| 2 |
| 2-x+1 |
| 2 |
| 2x+1 |
| 2•2x |
| 1+2x |
| 2 |
| 2x+1 |
∴a=1;
(2)f(x)+a>0恒成立,即a-
| 2 |
| 2x+1 |
| 2 |
| 2x+1 |
| 2 |
| 2x+1 |
而2x>0,2x+1>1,∴0<
| 2 |
| 2x+1 |
故2a≥2,解得a≥1,
故实数a的取值范围[1,+∞).
| 2 |
| 2x+1 |
| 2 |
| 2-x+1 |
| 2 |
| 2x+1 |
| 2 |
| 2-x+1 |
| 2 |
| 2x+1 |
| 2•2x |
| 1+2x |
| 2 |
| 2x+1 |
| 2 |
| 2x+1 |
| 2 |
| 2x+1 |
| 2 |
| 2x+1 |
| 2 |
| 2x+1 |