题目
| px2+2 |
| -3x |
| 5 |
| 3 |
(1)求函数f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)判断函数f(x)在区间(0,1)上的单调性,并加以证明.
答案
| 5 |
| 3 |
| px2+2 |
| -3x |
即f(2)=
| 4p+2 |
| -6 |
| 5 |
| 3 |
则所求解析式为f(x)=
| 2x2+2 |
| -3x |
(2)由(1)得,f(x)=
| 2x2+2 |
| -3x |
∵f(-x)=
| 2x2+2 |
| 3x |
∴函数f(x)是奇函数.
(3)由(1)可得f(x)=
| 2x2+2 |
| -3x |
| 2 |
| 3 |
| 1 |
| x |
证明如下:设0<x1<x2<1,
∴f(x1)-f(x2)=
| 2 |
| 3 |
| 1 |
| x2 |
| 1 |
| x1 |
| 2 |
| 3 |
| 1 |
| x2 |
| 1 |
| x1 |
=
| 2 |
| 3 |
| x1-x2 |
| x1x2 |
| 2 |
| 3 |
| 1 |
| x1x2 |
| 2 |
| 3 |
| 1-x1x2 |
| x1x2 |
∵0<x1<x2<1,0<x1x2<1,1-x1x2>0,x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2)
∴函数f(x)在区间(0,1)上是增函数.