已知函数y=f(x)的定义域为R,满足(x-2)

难度:一般 题型:单选题 来源:不详

题目

已知函数y=f(x)的定义域为R,满足(x-2)f′(x)>0,且函数y=f(x+2)为偶函数,a=f(2),b=f(log23),c=f(2

答案

由函数y=f(x+2)为偶函数,得函数y=f(x)的对称轴方程为x=2.
由(x-2)f′(x)>0,得x>2时f′(x)>0,函数y=f(x)在(2,+∞)上为增函数,
所以函数y=f(x)在(-∞,2)上为减函数.
因为2

解析