题目
c1 |
1 |
c2 |
22 |
cn |
n2 |
cn+1 |
n+1 |
(1)求数列an、bn的通项公式;
(2)求数列cn的通项公式;
(3)是否存在正整数k使得k(an+
7 |
2 |
3 |
bn+1 |
答案
∴n≥2,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-1)+(n-2)+…+1+1=
n(n-1) |
2 |
1 |
2 |
1 |
2 |
∴an=
1 |
2 |
1 |
2 |
∴
bn+1 |
bn |
n |
n+2 |
∴n≥2,bn=
bn |
bn-1 |
bn-1 |
bn-2 |
b2 |
b1 |
n-1 |
n+1 |
n-2 |
n |
1 |
3 |
2 |
n(n+1) |
∴bn=
2 |
n(n+1) |
(2)c1=1,
c1 |
1 |
c2 |
22 |
cn |
n2 |
cn+1 |
n+1 |
∴
c1 |
1 |
c2 |
22 |
cn-1 |
(n-1)2 |
cn |
n |
两式相减得:
cn |
n2 |
cn+1 |
n+1 |
cn |
n |
∴
cn+1 |
cn |
(n+1)2 |
n2 |
c1 |
1 |
c2 |
2 |
∴cn=
cn |
cn-1 |
cn-1 |
cn-2 |
c3 |
c2 |
n2 |
(n-1)2 |
(n-1)2 |
(n-2)2 |
32 |
22 |
n2 |
2 |
cn=
解析 |