已知数列an满足a1=1,an+1=an+n(n

难度:一般 题型:解答题 来源:不详

题目

已知数列an满足a1=1,an+1=an+n(n∈N*),数列bn满足b1=1,(n+2)bn+1=nbn(n∈N*),数列cn满足c1=1,

c1
1
+
c2
22
+…+
cn
n2
=
cn+1
n+1
(n∈N*
(1)求数列an、bn的通项公式;
(2)求数列cn的通项公式;
(3)是否存在正整数k使得k(an+
7
2
)-
3
bn+1
cn+6n+15
对一切n∈N*恒成立,若存在求k的最小值;若不存在请说明理由.

答案

(1)∵a1=1,an+1=an+n(n∈N*
∴n≥2,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-1)+(n-2)+…+1+1=

n(n-1)
2
+1=
1
2
n2-
1
2
n+1

an=
1
2
n2-
1
2
n+1
(n∈N*),(n+2)bn+1=nbn(n∈N*
bn+1
bn
=
n
n+2

n≥2,bn=
bn
bn-1
bn-1
bn-2
b2
b1
b1=
n-1
n+1
n-2
n
1
3
•1
=
2
n(n+1)

bn=
2
n(n+1)
(n∈N*

(2)c1=1,
c1
1
+
c2
22
+…+
cn
n2
=
cn+1
n+1

c1
1
+
c2
22
+…+
cn-1
(n-1)2
=
cn
n
(n≥2)(n∈N*
两式相减得:
cn
n2
=
cn+1
n+1
-
cn
n

cn+1
cn
=
(n+1)2
n2
n=1,
c1
1
=
c2
2
得出c2=2,n≥2
cn=
cn
cn-1
cn-1
cn-2
c3
c2
c2=
n2
(n-1)2
(n-1)2
(n-2)2
32
22
•2
=
n2
2

cn=

解析