题目
| c1 |
| 1 |
| c2 |
| 22 |
| cn |
| n2 |
| cn+1 |
| n+1 |
(1)求数列an、bn的通项公式;
(2)求数列cn的通项公式;
(3)是否存在正整数k使得k(an+
| 7 |
| 2 |
| 3 |
| bn+1 |
答案
∴n≥2,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-1)+(n-2)+…+1+1=
| n(n-1) |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
| 1 |
| 2 |
∴
| bn+1 |
| bn |
| n |
| n+2 |
∴n≥2,bn=
| bn |
| bn-1 |
| bn-1 |
| bn-2 |
| b2 |
| b1 |
| n-1 |
| n+1 |
| n-2 |
| n |
| 1 |
| 3 |
| 2 |
| n(n+1) |
∴bn=
| 2 |
| n(n+1) |
(2)c1=1,
| c1 |
| 1 |
| c2 |
| 22 |
| cn |
| n2 |
| cn+1 |
| n+1 |
∴
| c1 |
| 1 |
| c2 |
| 22 |
| cn-1 |
| (n-1)2 |
| cn |
| n |
两式相减得:
| cn |
| n2 |
| cn+1 |
| n+1 |
| cn |
| n |
∴
| cn+1 |
| cn |
| (n+1)2 |
| n2 |
| c1 |
| 1 |
| c2 |
| 2 |
∴cn=
| cn |
| cn-1 |
| cn-1 |
| cn-2 |
| c3 |
| c2 |
| n2 |
| (n-1)2 |
| (n-1)2 |
| (n-2)2 |
| 32 |
| 22 |
| n2 |
| 2 |
cn=
解析 |